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Quantum-Monte-Carlo simulations of polyethylene
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Abstract. The diffusion Quantum-Monte-Carlo method of solving the Schrödinger equation is applied to
the vibrational ground state of a polyethylene molecule. The results for the ground state energy show good
agreement with normal mode analysis. In addition to stretching, bending and torsional interaction van-
der-Waals interaction is applied to a single chain showing a decrease of the energy of 5%. The decrease for
a polyethylene system of 5 chains with 10 atoms per molecule at the positions of a unit cell is determined
to be 4.8% per molecule. Finally first steps towards simulating excited states were performed.

PACS. 03.67.Lx Quantum computation – 36.20.-r Macromolecules and polymer molecules
– 83.20.Jp Computer simulation

1 Introduction

One of the most successful algorithms for determining the
quantum mechanical properties of molecules is the dif-
fusion Quantum-Monte-Carlo (DQMC) method. Its ori-
gins go back to Wigner noting the equivalence of the
Schrödinger equation and the diffusion equation [1]. A
random walk simulation was first suggested by Metropo-
lis and Ulam in 1949 [2], but the first algorithm which
was able to determine the ground state energy of simple
electronic systems such as H+

3 was developed by Anderson
in 1975 [3]. During the following years DQMC produced
very accurate results for systems with few electrons such
as LiH [4], HeH [5] and H2 [6]. For larger systems such as
H2O [7], CH4 [8] or HF [9] DQMC still provides the best
results available [10].

In 1995 Kreitmeier et al. first applied Anderson’s
DQMC algorithm to a linear, one-dimensional polyatomic
molecule [12]. In our paper the method will be extended
to describe a polyethylene molecule with stretching, bend-
ing, torsional and van-der-Waals interaction using an im-
portance sample algorithm. Section 2 gives a short de-
scription of the DQMC method. In Section 3 we describe
the simulated system. Section 4 presents the results for
the single interactions. Section 5 describes the results for
the ground state energy in comparison with normal mode
analysis. Section 6 deals with the decrease of the ground
state energy by implementing van-der-Waals interaction
both in a single molecule and in a polyethylene unit cell
with 10 atoms as chain length. Section 7 finally shows first
simulation results for excited states.
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2 Theory

The general principles of the DQMC method are described
in [3,11]. Its application to a linear polyatomic molecule
is shown in [12]. Here we only give a short summary.

The Schrödinger equation in a potential V ,

i~
∂ψ

∂t
= −

~2

2µ
∇2ψ + V ψ, (1)

can be transformed by the substitution τ :=
it

~
to

∂ψ

∂τ
=
~2

2µ
∇2ψ − V ψ (2)

with the formal solution

ψ(x, τ) =
∑
n

αnΦn(x) exp(−Enτ). (3)

By defining En ≥ 0 without restriction the solutions decay
exponentially. Since the excited states decay faster, wave
function Φ0 and energy E0 of the ground state can be
determined for large values of τ . The origin of the method
rests in the formal equivalence of the Schrödinger equation
and the diffusion equation with a first order rate term
−KC serving as a source or sink for particles:

Schrödinger:
∂ψ

∂τ
=
~2

2µ
∇2ψ − V ψ (4)

Diffusion:
∂C

∂t
= D∇2C −KC. (5)
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Therefore the basic idea of the simulation technique is to
postulate ψ-particles or “psips” which undergo a diffusion
process with the parameters of the Schrödinger equation.
The average potential energy of the psips after reaching
steady state is equal to the ground state energy E0.

This “simple sampling” algorithm achieves good re-
sults for linear molecules with less than 25 atoms. For
larger molecules the results start to differ from the results
of normal mode analysis as stated in [12]. Therefore we
programmed an “importance sampling” algorithm to gain
better results for large molecules [13]. The main idea is to
use knowledge or assumptions about ψ in a wave function
ψtrial representing the expected final state. Multiplication
of the Schrödinger equation with ψtrial

∂ψ

∂τ
ψt =

~2

2µ

(
∇2ψ

)
ψt − V ψψt (6)

leads to the following equation for f := ψψt:

∂f

∂τ
=
~2

2µ
∇2f︸ ︷︷ ︸

(a)

−
~2

µ
∇(f∇ lnψt)︸ ︷︷ ︸

(b)

−

(
Hψt

ψt
− Vref

)
f︸ ︷︷ ︸

(c)

. (7)

The right side consists of three parts. Term (a) represents
the “free” part of the Schrödinger equation simulated by a
Random Walk as in the simple sampling algorithm. Term
(c) represents the modified term deciding about multipli-
cation or removal of psips in the system. Term (b) is new.
It represents a drift with velocity∇ lnψt towards the max-
ima of ψt allowing a faster convergence and more stability
of the simulation. In our case of the vibrational ground
state of a polyethylene molecule the ψtrial used was a sum
over Gaussians located at the equilibrium positions of the
atoms:

ψt =
N∑
i=1

ae−b(x−xi)
2

(8)

with N the number of atoms and xi the equilibrium posi-
tion of the ith atom. The parameters a and b were deter-
mined by fitting Gaussians on the ψ produced by simple
sampling simulations. The fit showed that the standard
deviation ∼ b−1/2 is much smaller than the distance be-
tween the atoms: b−1/2 � req. Thus the Gaussians can be
treated as independent and both the parameter a and the
sums in term (Hψt)/ψt can be reduced producing simple
additional terms for importance sampling.

3 Simulated system

In this article both the simple sampling and the im-
portance sampling algorithm are applied to a model of
a polyethylene molecule in three stages of approxima-
tion. The ground state conformation of polyethylene is
sketched in Figure 1 representing a sequence of 4 atoms
in the molecule [15]. It already implies usage of the united
atom model. The resulting conformation of the carbon

k

Fig. 1. Conformation of polyethylene sequence.

atoms shows a zigzag with an equilibrium bending angle
of θeq = 111.6◦ defined in the plane of three atoms j, k, l
in sequence. The torsional interaction between the atoms
of such a chain is described by the angle τ defined as the
angle between the planes i, j, k and j, k, l.

First we only considered a linear one-dimensional chain
of carbon atoms with a harmonic stretching potential

Vstr =
N−1∑
i=1

1

2
D(ri,i+1 − req)

2 (9)

where ri,i+1 is the absolute distance between atoms i and
i+1, req = 1.53 Å their equilibrium distance, N the num-
ber of atoms and D = 2651 kJ/mol the force constant.
This system was already described with simple sampling
in [12].

We then expanded this system to a two-dimensional
chain with a bending potential of the form

Vbend =
N−2∑
i=1

1

2
Kθ(θi,i+1,i+2 − θeq)

2 (10)

with Kθ = 663.1 kJ/mol as force constant and θ as bend-
ing angle.

As a third step torsional interaction was added to the
other forces and three dimensional simulations were exe-
cuted. The form of the torsional potential was taken from
[14]:

Vtor =
N−3∑
i=1

(a− b cos τi,i+1,i+2,i+3 + c cos3 τi,i+1,i+2,i+3)

(11)

where a, b and c are constants with a = 8.4 kJ/mol,
b = 18.4 kJ/mol and c = 26.8 kJ/mol. An angle of τ = π
represents the ground state corresponding to the all-trans
conformation.

Finally van-der-Waals interaction was implemented.
We described the interaction by the Lennard-Jones po-
tential

VLJ = 4ε

[(
σ

rij

)12

−

(
σ

rij

)6
]
. (12)

The parameters ε and σ were chosen to be ε =
0.477 kJ/mol and σ = 3.98 Å [17]. Due to the fact that we
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did not use internal coordinates for describing the system
as done in [16] but used Cartesian coordinates instead,
implementing the Lennard-Jones potential was possible
without problems.

The simulations were performed with 10 000 psips and
50 000 time steps with ∆τ = 0.09 a.u. for molecules with
10 and 25 atoms and with 5 000 psips and 20 000 time
steps for larger molecules.

4 Results for single interactions

First we consider the interaction energies for the individ-
ual oscillators, exemplary for chains of 10 atoms. As stated
in [12] the stretching energy of the oscillators of a lin-
ear chain were not distributed like a single Gaussian, but
could be best fitted by overlapping two Gaussians:

P (E) =
a

σa
√

2π
exp

(
−

(E −Ea)2

2σ2
a

)
+

b

σb
√

2π
exp

(
−

(E −Eb)2

2σ2
b

)
. (13)

The ratio of the parameters a and b was chosen to be
7/2 for a 10 atomic molecule reflecting the ratio of mid-
dle and end oscillators for stretching interaction. In the
simulation the energy of the single interactions was de-
termined for each oscillator and each MC time step after
steady state was reached. The number of hits in a cer-
tain energy interval during steady state is plotted. This
quantity is proportional to the probability for an oscilla-
tor to have this energy at steady state. The histogram,
the Gaussians and the resulting fit P (E) are shown for
the linear one-dimensional molecule with stretching and
the three-dimensional polyethylene molecule with stretch-
ing, bending and torsional interaction in Figures 2 and 3.
In analogy to the stretching case the ratio of a/b for the
distinction of end and center oscillators was chosen to be
6/2 for bending and 5/2 for torsional interaction. The fit
parameters of the single interactions are given in Table 1.

In [12] Kreitmeier proposed that the double peak struc-
ture was due to a higher energy of the end oscillators.
Simulations with periodic boundaries as seen in the insert
of Figure 2 proved this assumption since no second Gaus-
sian can be seen in this case. The fact that the peak is
lowered about 2% compared with the original case is con-
sistent with the observation that the results show a slight
asymptotic decrease of the energy with increasing number
of atoms. Periodic boundaries thus serve as the limiting
case.

Comparing Figures 2 and 3 with respect to stretch-
ing interaction one recognizes that the peaks of the two
Gaussians are much closer in the three-dimensional case
then in the one-dimensional one. The reason for this be-
havior is due to the bending angle of 111.6◦ in the second
case. Since this angle is reasonably close to 90◦ the oscil-
lators’ forces are almost perpendicular leading roughly to
a coincidence of the Gaussians.
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Fig. 2. Distribution of stretching energy for a single oscilla-
tor in a linear, one-dimensional molecule versus energy. Insert:
same simulation using periodic boundary conditions.
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Fig. 3. Distribution of stretching, bending and torsional en-
ergy for a single oscillator in a polyethylene molecule versus
energy. Dotted and solid lines: fits with Gaussians and sum of
Gaussians.

5 Results for the ground state energy

Based on the results of [12] we implemented bending
and torsional interaction and importance sampling. A his-
togram for the energy values at steady state was made and
fit with a Gaussian with parameters E0 and σ. They are
given in Table 2.

The comparison shows good agreement between simu-
lation and normal mode analysis data for importance sam-
pling simulations. The agreement with simple sampling
is limited to short chains (less than about 25 atoms) as
pointed out in [12]. Deviations from 2-6% are obtained for
simulations with bending and torsional interaction. Their
are mainly due to the fact that the torsional potential is
nonlinear while normal mode analysis only deals with a
harmonic approximation.
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Table 1. Parameters for Gaussian fits of the single interactions. All energies in kJ/mol.

Interaction Ea σa Eb σb

stretching (linear molecule) 5.59 0.11 5.91 0.11

stretching (polyethylene molecule) 5.91 0.12 6.07 0.12

bending 2.43 0.10 2.69 0.13

torsion 0.81 0.08 0.91 0.12

Table 2. Simulation and normal mode analysis data for the polyethylene molecule with stretching, bending, torsional and
van-der-Waals interaction. All energies in kJ/mol. Indices s and i refer to simple and importance sampling.

3 dim

# of
1 dim 2 dim

without vdW int. with vdW int.

atoms Esim0 Emode0 Esim0 Emode0 Esim0 Emode0 Esim0

10s 51.03± 0.42 51.13 74.51± 0.71 73.67 79.83± 0.84 80.03

10i 51.53± 0.21 51.13 74.76± 0.42 73.67 82.76± 0.59 80.03 79.87± 0.70

25s 135.4± 1.6 134.63 208.5± 4.0 198.00 229.4± 5.4 216.88

25i 131.2± 0.4 134.63 201.0± 1.0 198.00 223.5± 1.6 216.88 213.1± 1.6

50i 275.4± 1.6 273.70 412.3± 2.3 404.79 463.8± 3.6 444.76 438.3± 4.0

75i 416± 3 412.76 627± 4 611.99 706± 5 672.56 669± 5

100i 558± 4 554.38 842± 5 822.16 956± 8 900.41 913± 8

125i 1197± 13 1139.80 1139± 14

150i 1453± 13 1356.68 1373± 13

One also recognizes that in all cases the energy is di-
rectly proportional to the number of atoms as expected.
This indicates that the importance sampling method is
suitable for even larger molecules in contrast to simple
sampling.

6 Implementation of van-der-Waals
interaction

Next we studied the consequences of implementing van-
der-Waals interaction between every atom of the molecule.
Table 2 shows the comparison between importance sam-
pling simulations with and without van-der-Waals inter-
action in addition to stretching, bending and torsional in-
teraction.

Implementing van-der-Waals interaction thus yields a
lowering of the ground state energy of approximately 5%
more or less independent of the length of the molecule.

Next we expanded our method to a system of two
molecules with 10 carbon atoms separated by a distance
of a = 4.9 Å which is equal to the shortest distance of
two molecules in a polyethylene crystal with orthorhom-
bic structure. Comparing with a system of two molecules
with only intramolecular van-der-Waals interaction a low-
ering of the energy of 4.3% per molecule is found.

We finally considered 5 molecules with 10 carbon
atoms arranged in the unit cell of the orthorhombic struc-
ture with dimensions of a = 4.9 Å and b = 7.4 Å [17]. No
periodic boundary conditions were applied but a single

unit cell was studied instead. The intermolecular van-der-
Waals force between the atoms of the unit cell leads to a
lowering of the ground state energy of 4.8% per molecule.

7 Excited states

Finally we started simulating excited states to demon-
strate future possibilities. Due to the fact that a linear
polyatomic molecule reduces to a single oscillator in nor-
mal coordinates we first dealt with such a system to test
the algorithm applying some methods of Anderson for
electronic systems [10]. Excited states are characterized
by the nodes of ψ. Due to the analogy between ampli-
tude of ψ and concentration of psips via equations (4, 5)
a sink for psips is installed at the node. The algorithm
compares the position of every psip before and after every
time step. If a psip crosses a node within the time step
it is removed from the system. When trying to describe
systems with several nodes we found it necessary to sepa-
rately simulate all areas divided by nodes. Otherwise the
psips of the area with higher average potential energy are
continuously removed from the system whereas the psips
in the area with lower energy are permanently subject to
multiplication until no psip is left in the first area. Recon-
nection of the areas is done via adjusting the slopes of ψ at
the nodes. Figure 4 shows the result for the third excited
state. Theory and simulation are in excellent agreement.
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Fig. 4. Third excited state of the harmonic oscillator; points:
simulation, line: theory.

8 Conclusion

The aim of our work was to gain information about
the vibrational ground state of a polyethylene molecule.
We extended Kreitmeier’s simulation of a polyatomic
linear chain [12] to a polyethylene molecule with all-trans
conformation applying stretching, bending, torsional and
van-der-Waals interaction. The results for the single inter-
actions showed that a double peak structure of the energy
dispersion can not only be found for stretching, but also
for bending and torsional interaction. Simulations with
periodic boundaries showed that this structure is in fact
due to a different energy of middle and end oscillators.
A comparison of the results for ground state energy be-
tween simulation and normal mode analysis shows good
agreement for molecules with up to 150 atoms. By adding
van-der-Waals interaction the ground state energy of
a chain of arbitrary length was lowered 5%. Next we
simulated a polyethylene unit cell with 5 molecules and
10 atoms each, coupled by intermolecular van-der-Waals

interaction and found an additional decrease of the ground
state energy of 4.8% per molecule. Finally we made first
steps towards a description of the excited states. Simula-
tions with the test system of a harmonic oscillator showed
that the algorithm can describe excited states very well.

We would like to thank Robert E. Tuzun, Donald W. Noid and
Bobby G. Sumpter for providing us with normal mode analysis
data.
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